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Laminar natural convection from a horizontal plate and 
the influence of plate-edge extensions 
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Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 

(Received 10 June 1982) 

Laminar natural convection from a horizontal plate is studied by a finite-difference 
analysis and by experiments for Rayleigh numbers from 10 to lo4. The plate with 
uniform surface temperature or concentration on one side and insulated on the other 
is situated in an ‘infinite’ fluid medium. The buoyancy near the surface is directed 
either outward or inward normal to  the active surface - equivalent to a heated plate 
facing upward or downward. The effect of insulated vertical and horizontal extensions 
to the plate are also examined. 

Finite-difference solutions are obtained for a heated strip in a two-dimensional 
domain for a Prandtl number of 0.7. Mass-transfer experiments are performed with 
square naphthalene plates in air. Both numerical and experimental results justify a 
i-power law in the present range of Rayleigh number-i.e. Nusselt number or 
Sherwood number proportional to the Rayleigh number raised to  the power. The 
horizontal extensions cause a limited reduction in the transfer rate for the plate 
generating ‘outward buoyancy ’, and a larger reduction with ‘inward buoyancy ’. The 
vertical walls block the fluid flow directly, and thus greatly lower the transfer rate 
with either outward or inward buoyancy, 

1. Introduction 
The density of fluid near a solid surface can be different from that of the 

surrounding fluid owing to heat transfer, mass transfer or other processes. The 
buoyancy forces created by this density difference in a gravitational or other body 
force field generate a natural convection flow. The scope of the present study, limited 
to laminar flow, is classified by six geometric configurations listed on table 1 and 
illustrated in figure 1 .  Geometry 0 is a simple plate in which the buoyancy force is 
outward normal to its active surface. This might be a heated horizontal plate facing 
upward or a horizontal subliming naphthalene surface in air facing downward. I n  such 
an event, fluid is drawn from edges and then moves away from the surface owing 
to  the outward buoyancy. Geometry I is a similar plate in which the buoyancy forces 
are directed inward, normal to the surface. Examples are a heated plate facing 
downward and a naphthalene plate in air facing upward. With this geometry, fluid 
is drawn inward toward the centre of the surface and moves outward toward the 
edges. Geometries OH, OV, IH and IV refer to horizontal (H) and vertical (V) 
extensions on the plate edges of geometries 0 and I. 

The present laminar natural convection is characterized by the dimensionless 
parameters: Prandtl number Pr = v/a and Rayleigh number Ra = ga3@, -p,)/vap, 
in the heat-transfer problem; or Schmidt number Sc = v / D  and Rayleigh number 
Rum = gu3(p, --p,)/vDp, in the mass-transfer problem. The variable v is kinematic 
viscosity, a is thermal diffusivity, g is gravitational acceleration, a is characteristic 
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Geometry 

0 - simple plate with 
buoyancy force outward 
normal to its active surface 

horizontal extensions at 
plate edges 

OH - geometry 0 with 

0V - geometry 0 with 
vertical walls a t  
plate edges 

I - simple plate with 
buoyancy force inward 
normal to its active 
surface 

IH - geometry I with 
horizontal extensions a t  
plate edges 

IV - geometry I with 
vertical walls at 
plate edges 

Finite-difference 
solution for the 

laminar-flow two-dimensional 
heat-transfer problem in 

fluids with a positive 
coefficient of thermal 

Simple heated plate facing 

Mass-transfer experiments 
on square naphthalene 

plates in air expansion 

Simple naphthalene plate 
facing downward upward ; 
(extension/side < 006) 

plate with horizontal horizontal adiabatic 
extensions ; ex tensions 
extensionlside = + (i.e. 
extension/half-width = 1) 

plate with vertical walls; 
wall/side = 1, 2, 3 

extension/side = & 
Downward-facing naphthalene Upward-facing plate with 

extensionlside = +, +, 1, 2 

Downward-facing naphthalene Upward-facing heated 
plate with vertical 
adiabatic walls ; 
wall/side = &,, i, i, 1, 2 

Simple heated plate facing Simple naphthalene plate 
facing upward; downward ; 
extension/side < 006 extensionlside = & 

Upward-facing naphthalene Downward-facing heated 
plate with horizontal plate with horizontal 
extensions ; adiabatic extensions; 
extensionlside = t extension/side = i, 4, 2 

plate with vertical plate with vertical 
walls; walllside = 1 adiabatic walls; 

walllside = 4, 1 

Upward-facing naphthalene Downward-facing heated 

TABLE 1. Scope of present study 

length, pa is the fluid density far from the surface, ps is the fluid density (generally 
assumed constant) adjacent to the surface. and D is the binary diffusivity of the two 
species (e.g. naphthalene vapour in air). The heat-transfer coefficient in dimensionless 
form is the Nusselt number Nu = aq/k(T,--T,) and the dimensionless mass-transfer 
coefficient is the Sherwood number Sh = am/Dps(C,-CC,), where q is heat flux, k is 
thermal conductivity, T is temperature, m is mass flux, C is the mass fraction of the 
fluid component supplied from the surface, subscript s refers to surface, and subscript 
co refers to a region far from the surface. 

Different characteristic lengths were used in previous studies. In  order to compare 
plates of various shapes, Goldstein, Sparrow & Jones (1973) proposed a lengthscale 
a defined as the active surface area divided by its perimeter (i.e. a = + x width for 
an infinite strip and a = f x side for a square). Lloyd & Moran (1974) found that this 
dimension helped correlate their results as well. This characteristic length is used in 
the present study. 

Experimental studies on geometry 0 are summarized in table 2. Heat-transfer 
results can be found in Fishenden & Saunders (1950), Bosworth (1952), Mikheyev 
(1968) and Al-Arabi & El-Riedy (1976). Electrochemical experiments were performed 
by Wragg (1968), Wragg & Loomba (1970) and Lloyd & Moran (1974). In the 
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FIGURE 1. The geometries of horizontal plates and plate-edge extensions in the present study. 

aforementioned results, the data were generally presented as a +-power correlation 
(Nu a Raa or Sh cc R a i )  in the laminar regime and $-power (Nu cc Raj or Sh cc Rak) 
in the turbulent regime. Bandrowski & Rybski (1976) found a power of 0222. 
Goldstein et al. (1973) correlated their data with Q- and :-power relationships 
depending on the range of Ra. With only one curve for the data from this reference 
for Ra between 10 and lo4, a power of 0.211 can be used. 

The schlieren photographs in Rotem & Claassen (1969) and the interferograms in 
Pera & Gebhart (1973) support the concept of a boundary layer with geometry 0. 
Boundary-layer solutions that have been obtained for this geometry are listed in table 
3. For a heated semi-infinite surface, Levy & Schenectady (1955) obtained an integral 
solution. Stewartson (1958), Rotem & Claassen and Pera & Gebhart found similarity 
solutions. Assuming that the flow paths were parallel, Ackroyd (1976) obtained a 
heat-transfer solution for rectangular plates. Extending Ackroyd's solution method, 
Zakerullah & Ackroyd (1979) found a similarity solution for a disk. I n  the mass-transfer 
problem the flow velocity is not zero a t  the source surface but depends on the mass 
fraction of the fluid. Bandrowski & Rybski (1976) obtained similarity solutions for 
uniform mass fraction a t  the wall. Kerr (1980) improved their results. These solutions 
indicate that the normal velocity a t  the surface has no significant effect on the 
mass-transfer rate with the small fraction of naphthalene vapour present in most 
sublimation studies. I n  the boundary-layer solutions the 4-power law was found. 

The discrepancy in the power law between theory and experiments is well known. 
It was believed that the interaction of the flow in the middle of a finite plate caused 
deviation from boundary-layer flow. Ackroyd ( 1976) calculated that the change of 
air properties raised the power from Q to when the temperature gradient was raised 
from zero to twice the reference absolute temperature. This temperature difference, 
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- 

Nu = C1 Rac2 or 
Sh = C1 Rag2 

Reference 

Fishenden & 
Saunders ( 1950) 

Bosworth (1952) 

Mikheyev (1968) 

Wragg (1968) 

Bandrowski & 
Rybski ( 1  976) 

Wragg & 
Loomba (1970) 

Goldstein et a1 
(1973) 

Lloyd & 
Moran (1974) 

Al-Arabi & 
El-Riedy (1976) 

Present 
experiment 

c1 
0.38 

0.50 

0.50 
064 

0.45 

051 

0.783 
0834 

0.54 

050 

0766 
0.746 

Range of Ra 
or Ram 

1.6 x 103-1.6 X 10' 

Laminar 

Ra ' < 7-8 7.8 1 
1.6 x 102-3.9 x lo5 

Experimental techniques 

Heated square plate in air, 

Square plate, unknown fluid, 

Square plate, unknown fluid 

Electrochemical experiment 

Rectangular naphthalene 

Pr u 0.7 

and Pr, heat transfer 

and Pr, heat transfer 

on disk, Se = 2300 

plate in air, Sc N 2.5 
Force the above correlation 
to 4 power 

on disk, Sc cv 2300 

naphthalene plates in air, 
sc z 25  

4.7 x 1024.7 x lo5 Electrochemical experiment 

Circular, square and rectangular 2 x 102-104 1 
1-2 x 1 0 2  

Present curve fit for their data 
Force the above correlation 

Electrochemical experiment on 

to power 

circular, square, triangular 
and rectangular plates, 
sc X 2200 

Heated, square, circular and 
rectangular plates in air, 
Pr z 0 7  

Square naphthalene plate in 

1 10-104 

2 x 104-8 x 10' 

2 x 105-8 x 10' 

air, Sc x 2.5 
10-4'8 lo3 { Force the above corre1at)ion 

I to i power 

TABLE 2. Experiments on simple plate with buoyancy outward 
normal to its active surface (geometry 0). 

however, is much higher than in most experiments, and it cannot explain the 
mass-transfer experiments. Recently, Ishiguro et al. ( 1978) presented a numerical and 
experimental result for an infinite strip. Their results seemed to  indicate a &power 
region in the lower range of Rayleigh number. Beginning a t  Rayleigh number about 
4 x lo4, the power changed gradually from & to  $. 

Experimental results for geometry I are summarized in table 4. The data of 
Fishenden & Saunders (1950) were fitted t o  a +-power though a &-power law, which 
would be appropriate. Experiments by Kadambi & Drake (1960), Birkebak & 
Abdulkadir (1970), Fujii & Imura (1972), Aihara, Yamada & Endo (1972) and 
Restrep & Glicksman (1974) justified the existence of boundary-layer flow and 
indicated a $-power correlation. Recently Faw & Dullforce (1981) used holographic 
interferometry to study a downward-facing heated plate for Rayleigh numbers 
between 5 x lo3 and 2 x lo5. The temperature distributions found in the experiment 
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Nu = C1 RaC2 or 
Sh = C1 Razz 

Reference 

Schenectady (1955) 
Levy & 

Stewartson (1958) 

Rotem & 

Pera & 

Bandrowski & 

Claassen ( 1969) 

Gebhart (1973) 

Rybski (1976) 

Ackroyd ( 1976) 

Zakerullah & 

Kerr (1  980) 

Ackroyd (1979) 

Present numerical 
solution 

c1 
0620 

0637 

0639 

0646 

05598 

0.5775 

0.6883 

0609 
{ 0621 

Solution method 

Integral method, high Pr, heat transfer from 

Similarity solution, Pr = 072,  heat transfer from 

Similarity solution, Pr = 072,  heat transfer from 

Perturbation method, Pr = 072,  heat transfer from 

Similarity solution, Sc = 2.5, surface molar 

Similarity solution, Pr = 072,  heat transfer from 

Similarity solution, Pr = 0.72, heat transfer from a 

Similarity solution, Pr = 072,  heat transfer from a disk 

semi-infinite plate 

semi-infinite plate 

semi-infinite plate 

semi-infinite plate 

fraction 5 x lo-*, mass transfer from semi-infinite plate 

an infinite strip 

square 

Analogy solution, Sc = 2.5, surface molar fraction 
mass transfer from a semi-infinite plate 5 x 

Finite difference method, Pr = 0.7, heat transfer 

Force the correlation to a & power 
from an infinite strip, 40 < Ra < 8 x lo3 

TABLE 3. Theories on simple plate with buoyancy outward normal to its active surface 
(geometry 0) (laminar boundary-layer flow was assumed in all prior theories) 

were similar to those calculated by boundary-layer theory. The measured heat 
transfer is about 19% higher than the integral solution of the boundary-layer 
equations. 

Analytical solutions for geometry I are listed in table 5 .  A similarity solution seems 
unreasonable for this geometry. Wagner (1956), Clifton & Chapman (1969), Singh, 
Birkebak & Drake (1969), Singh & Birkebak (1969) and Bandrowski & Rybski (1976) 
obtained integral solutions of the boundary -layer equations with different assumptions 
a t  the plate edges. 

Publications on the influence of extensions a t  plate edges are scarce. Restrepo & 
Glicksman (1974) examined three boundary conditions a t  the edge of a downward- 
facing heated plate. The heat-transfer rate is highest for the edge heated at  plate 
temperature, lower for the edge maintained a t  room temperature, and lowest for the 
edge with extended insulation. Recently Hatfield & Edwards (1981) made holographic 
interferograms of downward-facing heated plates with adiabatic extension to side 
ratios from 0 to 0.2 for Rayleigh numbers between 1.6 x lo4 and 1.6 x lo8. Rather than 
a lengthscale of area/perimeter or ‘hydraulic’ diameter, they used aspect ratio as a 
separate parameter in their correlations for heat transfer both with and without an 
adiabatic extension. 

3 
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Nu = C1 Rac2 or 
Sh = Cl Rag 

Range of Ra 
Reference c1 c2 or Ram Experimental technique 

Heated square plate in air, 

Force the above correlation t o  
0 ”  (present curve fit) 

power 
t 

Fishenden & 
Saunders (1950) 

Kadambi & 0613 Laminar Heated circular plate in air 
Drake (1960) 

Rectangular naphthalene plate 

Force the above correlation to 
Bandrowski & 1.27 016g1  Sc x 2.5 

+ power 

103-3 lo‘ 
Rybski (1976) (092 t 

Birkebak & 0516 t Laminar Square plate in water 

Fujii & 0440 t 1.25 x 105-1.25 x los Heated rectangular plate in air 

t At 1.62 x lo7 Heated rectangular plate in air Aihara et al. 

Abdulkadir (1970) 

Imura (1972) (Quasi-two-dimensional) 

At 072 x lo7 (Quasi-two-dimensional) (1972) 
Heated 

Cooled edges, !!‘edge = T ,  
plate 
in air T edge = T, 

0.31 ) 1.6 x 104-1.6 x lo5 Adiabatic extensions 
Glicksman (1974) i 

Restrepo & 

l(r2.5 x lo2 Square naphthalene plate in 
air, Sc x 2.5 i 

0906 0089 

:::5! 0914) 
; 2.5 x 1024.5 x lo3 Force the correlation to 5 power I Present 

experiment 

TABLE 4. Experiments on simple plate with buoyancy inward 
normal to its source surface (geometry I). 

2. Analysis 
Consider steady laminar flow generated by a heated plate immersed in a large body 

of fluid (with a positive coefficient of thermal expansion). The plate is on the 
( X ,  2)-plane, and the positive Y-axis is directed outward from the active surface. The 
governing equations with Boussinesq approximation can be written in dimensionless 
form as follows: a u  a v  aw 

ax ay  a2 
-+-+- = 0, I 

au au au a2u a2u a2u ap 
ax a y  az ax2 ay2 a 2 2  ax’ u-+ v-+ w- = -+-+--- 

av av  av a2v a2v a2v a~ 
ax aY az ax2 ay2 a22 a y -  U-+ V-+ W- = -+++---+GrO, 

aw a w  aw a2w a2w a2w a p  
a x  a y  az ax2 ay2 a22 az’ u-+v-+w-=-+-+--- 
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Nu = C1 RaC2 or 
S h = C 1  Rag 

Reference 

Wagner (1956) 

Clifton & 
Chapman (1969) 

Singh et al. (1969) 

Singh & 
Birkebak (1969) 

Bandrowski & 
Rybski (1976) 

Present numerical 
solution 

c1 
050 

044 

050 

0460 

05269 

0560 

0524 

C2 Solution method 

Infinite strip, high Pr, boundary-layer thickness 
is assumed zero at plate edge, integral method, 
heat transfer 

f, Infinite strip, Pr = 0.7, boundary-layer thickness 
is assumed to be the hydrodynamic critical depth 
at plate edge, integral method, heat transfer 

High Pr, boundary-layer 
thickness is assumed zero 
a t  plateedge, integral method 
with Ritz and Galerkin 
approximation, heat transfer 

i For infinite strip 
t For square plate 

For circular plate 

3 Infinite strip, Pr = 07,  boundary-layer thickness 
is assumed minimum a t  plate edge, integral method, 
heat transfer 

+ Infinite strip, Sc = 2.5, surface molar fraction 
5 x 
to be critical depth a t  plate edge, integral 
method, mass transfer 

boundary-layer thickness is assumed 

0190 Finite-difference method, Pr = 07 ,  heat transfer 
from infinite strip, 40 < Ra < 8 x lo3 

i Force the correlation to i power 

TABLE 5.  Theories on simple plate with buoyancy inward normal to its active surface 
(geometry I) (laminar boundary layer flow was assumed in all prior theories) 

The dimensionless velocities are U = ua/v ,  V = va/v  and W = wa/v ,  corresponding 
to the dimensionless coordinates X = x / a ,  Y = y / a  and Z = z /a .  

0 = (T- T,)/(q- T,) 

is the dimensionless temperature; the dimensionless pressure is P = p’a2/pv2,  where 
p’ is the dynamic pressure, and the Grashof number Gr = Ra/Pr. 

The sign of Gr 0 in the equation is positive when the heated plate is facing upward 
(0) and is negative when it is facing downward (I). Boundary conditions are 
U = V = W = 0, 0 = 1 at the heated surface, U = V = W = B / a T  = 0 a t  the 
insulated surface, and U = V = W = 0 = 0 at infinity. 

If the velocity components ( U  and W )  parallel t o  the heated surface predominate 
it is reasonable to assume: (i) the diffusion of momentum, energy or mass in the 
horizontal direction is negligible compared with the corresponding convection term ; 
and (ii) the vertical pressure gradient is due to buoyancy only. 

A set of stretch variables that satisfy the above assumptions are 

Y* = YGri,  u* = UGr-2, v* = VGy-?, W* = WGr-2, p* = PGr-t. ( 2 )  

After substitution of stretch variables into ( 1 )  and simplification by comparison of 
the order of magnitude of terms, the three-dimensional boundary-layer equations are 

3-2 
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written as 
au* av* aw* 
ax aY* az -+---+- = 0, 

au* a w *  ap* a u* a u* 
ax a Y* az ay*z ax’ 

a r * -  

- u* __ + v* -+ Jj7* - - 

dP* 
0 = --+o, (3) 

Boundary conditions are U* = V* = W* = 0,  0 = 1 a t  the heated surface, 
U* = V* = W* = aO/dY* = 0 a t  the insulated surface, and U* = 0 = W* = 0 a t  
infinity. 

I n  (3), Gr is no longer a direct parameter of the problem but is hidden in the stretch 
variables. The solution of the equation will give 

From the definitions. 

The average Nusselt number, obtained by integration over the surface, is also 
proportional to Rayleigh number to the & power. 

Note that the use of the stretch variables indicates that  if a laminar boundary-layer 
flow is induced by a horizontal heated surface with uniform temperature, Nu is 
proportional to Gr? or Rai at a fixed Pr. With the same reasoning, the ;-power law 
should extend to the analogous mass-transfer problem. 

Various factors could invalidate (3) and cause a deviation from the &-power law. 
Vertical walls a t  the plate edges could replace the boundary-layer flow with a slow 
recirculating flow. For geometry 0 irregular plumes and turbulence are generated a t  
high Rayleigh numbers. If the flow becomes turbulent, there are indications that the 
exponent would be +. For geometry I,  the flow is stable and remains laminar a t  high 
Rayleigh numbers. The power-law correlations found in recent experimental studies 
are shown in table 4. 
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3. Finite-difference solution 

equations (1) can be reduced to a two-dimensional elliptic problem. 
For a heated plate infinite in the Z-direction (an infinite strip), the governing 

au av 
ax a y  
-+- = 0, I 

av av a2v a2v ap 
ax ay ax2 ay2 a y -  

ao ao 1 a 2 0  a20 

ax a y  Pr 0 8x2 ay2 

u-+ v- = -+---+GO, 

u-+v-=- -+- . 

Boundary conditions are 

U = V = 0, 0 = 1 

U = V = a@/aY = 0 a t  the insulated surface, 

U = V = 0 = 0 

at the heated surface, 

and a t  the domain boundary. 

Note that no boundary-layer assumptions have been made. Both the domain and 
the plate thickness are finite. There are several coordinate transformations to map 
the infinite domain into a finite one. However, these transformations usually lose the 
momentum and energy balance in the finite-difference equations. I n  the present 
solution method the domain is made sufficiently large and the plate sufficiently thin 
to  achieve a desired accuracy. An expanding grid system is used for better efficiency 
in calculation. 

The general finite-difference method comes from Patankar (1980). Details of the 
specific techniques for the present problem are given by Lau (1978). I n  the numerical 
scheme the calculation domain is discretized into rectangular control volumes. The 
convection and diffusion terms in the partial differential equations (7)  are written in 
finite-difference form by the ‘ power-law scheme ’, which is an improved upwind- 
difference scheme. The pressure terms in the velocity equations are treated with the 
‘SIMPLE ’ algorithm, in which the variable pressure is iterated to satisfy continuity. 
Since the buoyancy term depends on the variable temperature, it is also subject to  
iteration. The finite-difference equations are solved by the ‘ line-by-line successive- 
relaxation method’. Owing to the nonlinearity of the problem, a t  high Rayleigh 
number and with a more complex geometry, the iteration has to  be slowed down by 
smaller relaxation factors. The convergence criteria is set for a 1 yo relative difference 
between two iteration steps in temperature calculations. 

Figures 2 (a-f) show the geometries of the six configurations in the present study 
as well as contours of constant temperature 19 and stream function Y ,  which are 
described later. The dashed lines in the figures are the midplanes of the two-dimensional 
domain. The half-width of the heated surface is one unit. This surface is 11 units from 
the upper boundary, 3 units from the bottom, and its centre is 6 units from the side. 
The thickness of the heated surface, the insulation a t  the bottom, and the vertical 
walls are 0.1 unit. Since an infinitesimally thin insulation is impossible, the insulated 
edge in geometries 0 and I is 0.1 unit (that is, extension to  plate width = &, on each 
side). The grid distance is small near the heated surface and the edge of the plate, 
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Ratio of the distances from the 
plate to the boundaries 

(upper : lower: side) Nu 
1 1 :  3 :  6t 2406 
16: 5: 9 2.427 
16: 5 :  12 2.457 
25: 5 :  12 2455 

Relative 
difference (yo) 

0 
0.9 
2.1 
2.0 

t Domain of present calculations as shown on figures 2(u-e). 

TABLE 6. Effect of the domain size on the numerical solution for 
geometry 0. Ru = 8 x lo2; Pr = 0 7 ;  plate width = 2 units. 

and expands gradually further away. A 14 x 19 grid system is used in the present 
(X, Y)-domain. 

Since the heated surface is in the middle of the calculation domain, the boun- 
dary conditions at  the plate surface cannot be prescribed directly. This difficulty 
is solved by assigning appropriate properties to the control volumes that 
represent the surfaces: ksource = 106kf,,id for the surface of uniform temperature; 
kinsulstion = 10-'kfluid for the insulated surface, and ,u,olid = 7 x lO5pfIUid for the 
solid surface, where k is thermal conductivity and p is viscosity. 

The partial differential equations (4) are elliptic. Physically, the flow is recirculating 
in the calculation domain. However, as the Rayleigh number increases, boundary-layer 
flow is expected near the heated surface. In such a flow, the fluid is largely modified 
by the heated surface and the immediate upstream condition. Therefore the solution 
of the present elliptic problem should exhibit the nature of local boundary-layer flow 
near the plate surface. Two characteristics of the local boundary-layer flow are 
relevant to the present solution method. First, because the boundary-layer thickness 
grows thinner at  higher Rayleigh numbers, it is essential to have adequately small 
grid distance near the plate surface. Secondly, the domain boundary far from the 
heated plate can neither greatly affect the local flow patterns nor the heat transfer 
near the plate. Thus it is not necessary to use a large domain size to simulate the 
infinite domain as long as the local boundary-layer flow is developed. The influence 
of the domain size is shown in table 6. A t  Ra = 800, the heat transfer rate increases 
by 2 % as the domain is approximately doubled. This influence should diminish at 
higher Ra. 

Solutions are obtained for Pr = 0.7 and 10 < Ra < lo4. Examples of isotherms and 
normalized stream functions are plotted on figure 2, while average Nusselt numbers 
are plotted as a function of Rayleigh number on figure 3. Isotherms are zero at  the 
domain boundary, one at the heated surface. Stream functions are zero at the solid 
surface and maximum inside the largest recirculating loop. 

Geometry 0 

Figure 2 ( a )  shows the solution for a heated plate facing upward. Particular attention 
is paid to the region near the plate. The fluid is drawn from the sides and below and 
increases its velocity near the plate edges. Then the fluid decelerates and turns 
upwards near the midplane. Finally, it attains a higher velocity in the plume. The 
average heat-transfer correlation obtained by least-square fit is Nu = 0609RaoZo3 
for 40 < Ra < 8 x lo3. Forcing the correlation to a + power law, Nu FZ 0621Rai. 
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Geometry OH 
Results for insulated horizontal extensions are shown in figure 2 ( b )  for Ra = 800. The 
velocity of the approaching flow and the heat transfer are lower when the extensions 
are in place. In  the present problem the driving force is generated by the active surface 
instead of the free stream. Therefore the boundary layer does not thicken indefinitely 
as the extension increases. The extension has a limited effect on the average heat 
transfer (figure 3 a ) ,  which is probably approached near the maximum extension 
studied. 

Geometry OV 
Since the flow with an upward-facing heated surface comes from the sides toward 
its centre, vertical walls at the edges block the flow and cause flow separation. Figure 
2 ( c )  shows that the convection pattern is moved above the top of the walls while the 
overall flow strength (indicated by Ymax) is reduced. The flow between the walls is 
relatively slow. Isotherms approximate a conduction pattern as the height of the wall 
increases. The heat transfer is considerably lowered by what is in effect a layer of 
thermal resistance on the heated surface. 

Geometry I 
Figure 2 ( d )  represents the natural convection flow near a heated plate facing 
downward at different Ra. Fluid is drawn from below and turns parallel to the surface 
before flowing out past the edge. Velocity and temperature patterns of boundary-layer 
type can be observed near the heated surface. Compared to geometry 0, the flow is 
slower and the heat transfer is smaller. A curve fit of the present result is 
Nu = 0560Ra0'190 for 40 < Ra < 8 x lo3 or Nu z 0.524Ra;. 

Geometry IH 
I n  geometry I fluid leaves the plate edges and forms a plume in the back of the plate. 
As shown on figure 2 ( e ) ,  the presence of an adiabatic extension obstructs the progress 
of the plume. The thermal boundary layer is extended along with the flow, and the 
heat transfer is lowered. The effect of the horizontal extension is much stronger in 
geometry I H  (figure 3b) than in geometry OH (figure 3a) .  The lower limit on heat 
transfer with a horizontal extension for geometry OH has not been reached in the 
present study. 

Geometry IV  

A vertical wall has the same effect with geometry IV as with geometry OV, but the 
flow stability is stronger and the fluid velocity slower. The near-conduction patterns 
between the walls shown in figure 2 (f) indicate the predominance of the conduction 
mechanism on the heat-transfer process. The Nusselt number (cf. figure 3b) is low 
and almost independent of Ra for wall-to-side ratios of and 1 (or wall height to active 
plate half-width ratios of 1 and 2). 

4. Experiment 
Experiments are run in a sealed insulated room about 100 m3 in volume. Inside 

the room a steel frame measuring 1.5 x 1.5 m2 a t  the base and 2 m in height is covered 
with baffles a t  its top and upper parts. A naphthalene plate is hung below a balance 
inside the baffles. Sublimation takes place and the mass loss is measured by the 
balance. Since the test room is sealed during each experiment, the balance is remotely 
controlled. Thermocouples and barometers are also read from outside the room. The 



Laminar natural convection from a horizontal plate 

Geometry OH (a) 
10 

Extension/side = 

I I I I I I I I I  I I I I I I l l 1  I I I 1 1 1 1 ~  

10 102 103 1 0 4  
Ra 

69 
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FIQURE 3. Average heat-transfer rate from a heated plate: ( a )  facing upward; 
( b )  facing downward; numerical results. 

mass-loss rate varies with the plate sizes and geometries and requires test durations 
ranging from an hour to a day. 

The test plates are obtained by casting pure naphthalene in aluminium frames of 
different sizes. The sizes of the approximately square subliming surfaces varied from 
2.58 x 2.59 em2 to 20.30 x 2029 em2 and give a range of Ram from 10 to lo4 a t  room 
temperature. Aluminium foils are added on the frames to make vertical walls. No 
actual horizontal extension is added to the naphthalene plate, but adhesive plastic 
tapes are used to  cover the side edge and part of the naphthalene surface when a 
non-active horizontal extension is derived. Owing to the finite thickness of the 
aluminium frames, the extension-to-side ratio is not zero but less than 0-06 in the 
present experimental study of geometries 0 and I. The total weight of each 
sublimation plate is below 200 g. The mass loss can be measured by an analytical 
balance with a precision of kO.05 mg. 
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Experimental data 
o Simple plate (geometry 0 )  
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V Wall/side = 1 (geometry OV) 
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FIGURE 4. Average mass-transfer rate from a naphthalene plate 
(a )  facing downward, ( b )  facing upward; experimental results. 

As compared with heat-transfer experiments, the naphthalene-sublimation tech- 
nique eliminates the serious problem of heat leakage by conduction and radiation. 
However, the sublimation of naphthalene would lower the temperature of the active 
surface slightly. Although this decrease in temperature is too small to  be detected 
by thermocouples in the present experiment, i t  can create a thermal Rayleigh 
number. The natural-convection Rayleigh number induced by the sublimation latent 
heat is calculated to be a maximum of about 8 % of that due to  the mass transfer. 

Experimental results for a naphthalene plate facing downward (geometry 0) are 
shown on figure 4 ( a ) .  The curve fit of the data is Sh = 0.766Ra&lS5 (k 10%) for 
10 < Ram < 4.8 x lo3 or Sh x 0746Rak. 

No significant change in the mass-transfer rate is observed when horizontal 
extensions of half of the side are added. The effect of the vertical wall is large, but 
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diminishes as Ram increases. For a wall-to-side ratio of 1 ,  Sh is lowered by about 70 % 
at Ram = lo2 and 40% at Ram = lo3. 

Figure 4 ( b )  shows the experimental results for a naphthalene plate facing upward 
(geometry I). The curve fit is Sh = 0906Ra&089 for 10 < Ram < 2.5 x lo2 and 
Sh = 0 - 5 1 6 R ~ & l ~ ~  for 2.5 x lo2 < Ram < 4.5 x lo3. For the results with a higher 
Rayleigh-number range the equations can be forced to a $ power and become 
Sh z 0.495RuL for 2.5 x lo2 < Ram < 4 5  x lo3. For geometry IH with the extension- 
to-side ratio of ;, the mass-transfer rate is lowered by a factor of about 20 % over a 
wide range of Ram. For geometry IV with a wall-to-side ratio of unity, the decrease 
of the mass-transfer rate is very large - about 85% a t  Ram = lo3. 

5. Comparison of results 
The present numerical solutions for infinite horizontal strips and experimental 

results for square surfaces can be compared with other analyses and experiments. 
Some basic points should be noted before comparing results. 

(i) Mass transfer is analogous to the heat-transfer problem only if the velocity of 
the fluid at the active surface is small. This condition is well satisfied in the present 
naphthalene experiments. 

(ii) Sh is analogous to  Nu and Sc is analogous to Pr. The parameter Pr or Sc varies 
widely in different studies. Pr is about 0 7  for air; and Sc is approximately 2.5 in the 
naphthalene-air system and 2200 in some electrochemical experiments. The present 
numerical study indicates that a t  a fixed Ra, as Pr increases from 0 7  to 2.5, Nu 
increases by 7.5 % in geometry 0 and 5.0 yo in geometry I. This result agrees with the 
boundary-layer analysis in Pera & Gebhart (1973), predicting that Nu increases with 
Pr to  the &power at fixed Ra for 1 < Pr < 10. When Pr approaches infinity, the Nu-Ra 
correlation is independent of Pr. 

(iii) The characteristic length (active area/perimeter) is useful in comparing results 
for plates of different shapes. This may also be inferred from the analytical results 
of Ackroyd (1976) and Zakerullah & Ackroyd (1979) in table 3 for geometry 0, and 
Singh et al. ( 1 9 6 9 ~ )  in table 5 for geometry I .  

(iv) The present numerical method takes advantage of the local boundary-layer 
flow near the heated surface in the elliptic problem. A relatively small calculation 
domain is used to  simulate an infinite environment. However, when the flow is slow 
and the conduction mechanism is strong, the problem is highly dependent on the 
domain size. Since the test room in the experiment is much larger than the calculation 
domain in the numerical solution, comparison between the two results is inadequate 
for the slow-flow situation when the Rayleigh number is low or the vertical walls are 
added. 

Experimental results for geometry 0 are summarized in table 2. Heat-transfer and 
electrochemical experiments are usually performed at higher Ra than are naphthalene 
experiments. Bosworth (1952), Mikheyev (1968) and Al-Arabi (1976) give the same 
1 power heat-transfer correlation and agree reasonably well with electrochemical 
experiments by Lloyd (1974). Wragg (1968) and Wragg & Loomba (1970). I n  a lower 
range of Ra, the data of naphthalene experiments by Goldstein et al. (1973) and 
Bandrowski & Rybski (1976) are close if they are put into a 5 power correlation. 

As shown in table 3, solutions of the boundary-layer equation for geometry 0 are 
in good agreement. The present numerical solution includes the non-boundary-layer 
nature near the centre and the edge of the plate. The resultant Nusseit number is 
slightly lower than those found with the boundary-layer analysis. 
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Comparison of some representative results €or outward buoyancy is made in figure 
5(a). The present mass-transfer experimental results are about 20 yo greater than the 
calculation of the finite-difference solution. The f power correlation from Wragg & 
Loomba ( 1970) intersects the present experimental power correlation around 
Ra = lo3. Extrapolation of other experimental results may also do so a t  Ra between 

The natural convection flow with geometry 0 is unstable. The critical Ra observed 
for the transition from laminar flow for Pr = 0 7  is 7 x lo5, found by Rottem & 
Claassen (1969), 3.6 x lo5, found by Pera & Gebhart (1973), and 3.8 x lo4, found by 
Ishigura et al. (1978). In  reality, the three-dimensional effect in a finite plate may 
lower the critical Ra further. Both the present experimental and numerical results 
suggest that the $power does exist for Ra between 10 and lo4. When the downstream 
flow becomes unstable or it begins a transition to turbulent flow, the power of the 
Nu-Ra correlation will increase gradually from $ to  perhaps Q. 

The edge effects on geometries OH and OV from the present study are compared 
in figure 5 (a) .  The decrease of the heat-transfer rate (with a horizontalextension-to-side 
ratio of 4) is 10 % in the numerical result, but much smaller in the experiment. Effects 
of vertical walls are shown for wall-to-side ratios of 1 and 2. However, the comparison 
is inadequate, probably due to the finite domain size in the slow-flow situation in the 
numerical calculations. 

The fluid flow induced in geometry I is stable and no turbulent flow has been 
observed. Results of different experiments - Birkebak & Abdulkadir (1970), Fujii & 
Imura (1972) and Aihara et al. (1972) - agree well and are shown in table 4. The 
present experiment, covering the lower range of Ra, is close to the extrapolated results 
of others. Prior integral solutions of the boundary-layer equations (Wagner 1956; 
Clifton & Chapman 1969; Singh et al. 1969; Singh & Birkebak 1969) do not differ 
much, even though the assumptions of the boundary condition a t  the plate edge are 
different. The present numerical result is approximately 6 yo above the experiment 
and within 10% of the other theories shown in table 5. 

Figure 5 ( b )  shows some representative results for the case of inward buoyancy. In  
geometry IH,  for a horizontal extension-to-side ratio of 8, the present numerical and 
experimental results both indicate a lowering of the transfer rate by 20 yo. Restrepo 
& Glicksman (1974) found 30 % for a ratio of & in their heat-transfer experiments. 
The Hatfield & Edwards (1981) study on the effect of small horizontal extensions 
shows the same trend as the present study. I n  geometry IV, the effects of a vertical 
wall are large, as shown in both the numerical prediction and the experiment. 
However, detailed comparison is inadequate as the domain used in the calculation 
is much smaller than that used in the experiment. 

103 to 104. 

6. Conclusions 
Compiling the results of prior and present studies, several conclusions are made. 
(i) Despite the plume formation, the laminar boundary-layer flow seems to exist 

near the active surface in either geometry 0 or I .  For Ra between 10 and lo4, a power 
law is generally found for the Nusselt-number or Sherwood-number variation. In  
geometry I, the experiments indicate a somewhat lower exponent at Rayleigh 
numbers below 100. 

(ii) The insulated horizontal extension causes a limited reduction in the transfer 
rate in geometry OH, but is much more effective in geometry IH. 
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(iii) The insulated vertical wall lowers the transfer rate significantly in geometry 
OV and can cause an even larger reduction in geometry IV. The relative reduction 
tends to be smaller at  higher Rayleigh numbers. 

This study was supported by the National Science Foundation under Grant 
NSF/ENG 77-21626. 
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